Raising fluid walls around living cells

Raising fluid walls around living cells

  一种用不混溶流体之间的界面构建微流控阵列的方法。

Introduction

  思路:

  • 微流控在主流生物实验室的应用仍受到如下限制:

    • 材料不适合细胞生长;
    • 结构封闭,开放性差;
    • 实验期间不能更改预先设定的几何形状;
    • 制造和操作成本高;
    • 实验流程通常与现有生物实验流程不一致。
  • 开放式微流控系统如悬浮、空气和纸微流控,往往需要建立新的基于活细胞的检测方法,不与传统生物学材料与方法兼容。

  • 另一种开放的方法是在标准微孔板的孔内形成水凝胶壁,但需要在接种细胞前就构建好阵列。

  • 更有生物学意义的方法是在生物学家传统培养皿上形成排列。

  • 宏观世界中用液体壁创建结构的想法是行不通的——重力使它们坍塌成水坑。因此,在宏观尺度和大多数微流体装置中,液体被保持在具有实心壁的腔室中。然而,随着长度尺度变得更小,界面力主导重力,使类似于固体材料的流体界面限制液体成为可能。

  • 作者开发了一种在培养皿上构建与重配置微流控阵列的方法,以适应细胞生物学中使用的一些主要工作流程。

Methodology

  • (A)将DMEM+10%胎牛血清添加到培养皿中,随后去除大部分培养基,留下覆盖底部的薄膜,在其上覆盖不混溶的碳氟化合物FC40,以防止培养基蒸发,且保持无菌环境。疏水和亲氟的触控笔【其具有由聚四氟乙烯(PTFE)或“Teflon”制成的锥形尖端】在底部移动以形成正方形图案。由于碳氟化合物优先润湿Teflon(与水相比),FC40被带到基底上并置换水相(因为它也优先润湿基底)。
  • (B)不同的模式:
    • (a)等间距的垂直和水平线创建一个阵列。随后将60 nL蓝色染料添加到选定的腔室中;形成了外围为正方形框,内部为“OXFORD”字样的图案。放大图(右)显示了有/无染料的单个腔室。
    • (b)用触控笔形成两个正方形(一个比另一个稍大),然后在中间的空间手动添加染料,从而创建类似的图案;每个字母都是通过形成其侧面并再次手动填充内部而制成的。放大图显示字母“F”是一团连续的液体。

Reconfiguring microfluidic arrangements

  • (1)打印初始图案:由外围的正方形,中间的三角形以及内部的圆形构成;
  • (2-4)在每个腔室中加入不同的染料,染料被限制在FC40壁内;
  • (5)在圆圈中加入更多的黄色染料;
  • (6)加入3 μL黄色染料后,圆形边界线破裂,内容物溢出到三角形中;
  • (7)加入24 μL后,三角形边界线破裂,内容物溢出到方形中。
  • (8)从正方形中抽出60 μL;
  • (9)一个新的图案被打印出来:由外围的正方形,中间的圆形以及内部的三角形构成;
  • (10-12)像上面一样在三个不同的腔室里加入彩色染料。这些结果表明,FC40液壁可以被破坏并重建成任何所需的二维形状,并且它们可以有效地限制液体。

Building fluid walls around single cells and clones

  • (A)在单个腔室接种单细胞之前构建液壁。在制作网格后,加入染料或细胞(鼠乳腺癌细胞NM18)。由于FC40对O2和CO2自由渗透,因此不影响细胞生长。
    • (a)红色染料(600 nL)被添加到每个腔室中,以展示网格。
    • (b)将0.2 cells/600 nL的培养基添加到每个腔室(因此只有少数腔室有一个细胞),培养8天后对腔室进行成像,中央腔室含有一个克隆(见放大图)。
  • (B)在单克隆细胞周围建液壁。
    • (a)红色染料(1 μL)被添加到皿里的各种形状中;
    • (b)HEK细胞接到一个皿里(密度~1 cells/cm2),生长8天成为克隆。接下来除去大部分培养基,在表面留下一层薄膜,加入FC40,在克隆周围画出各种形状,用打印机在每个腔室中注入1 μL的培养基,收集图像。

Clone picking

  • (A)克隆挑选方法:
    • (a)玻璃支架——“参考板”上的位置用独特的标识符(即A1,A2…,B1…)标记,用于细胞克隆定位;
    • (b)在“参考板”上放置有菌落(红色)的培养皿;
    • (c) 根据位置由程序在选定的克隆(黑线)周围打印出液壁;
    • (d)从腔室中取出克隆。
  • (B)隔离一个克隆,HEK细胞以低密度接种(密度~1 cells/cm2),培养8天成克隆,将皿放在“参考板”上,并在选定的克隆周围建立液壁。
    • (a)带有独特标识符的“参考板”;
    • (b)背景为“参考板”的克隆及放大视图;
    • (c)构建液壁后的克隆。
  • (C)克隆挑选:
    • (a)图为围绕一个活的克隆建立的方形液壁,先通过添加/回收1 μL PBS来清洗细胞,然后添加1 μL胰蛋白酶;
    • (b)37℃下5 min,使细胞从培养皿表面分离,回收1 μL细胞悬液;
    • (c)将取回的细胞接种到12孔微孔板中,常规培养5天,细胞贴壁并生长。

Fluid walls are effective barriers to drugs

  • (A)在一个3×3的网格中,中心加入1 μL培养基,周围的培养基则含有浓度为10 μg/mL的Puromycin(一种小分子翻译抑制剂,可以杀死哺乳动物细胞),孵育24 h后用台盼蓝评估细胞活力,外围的细胞已经死亡(每个腔室超过60%),而中央的细胞仍活着(细胞死亡少于5%)。
  • (B)将0.5 μL的培养基±TNF-α(浓度10 ng/mL)加入到图案中。由于该HEK细胞编码一个由TNF-α开启的启动子控制的GFP报告基因,它们在暴露于该细胞因子时发出绿色荧光。荧光图像显示,只有被处理的体积中的细胞发出绿色荧光。这些结果表明,液壁对这些药物形成了有效的屏障,并允许对生长在同一皿中的细胞进行并列比较。

Wound healing

  • (A)工作流程的示意图:

    • (a)一层薄薄的培养基上覆盖着FC40;
    • (b)并排打印两个腔室;
    • (c)在腔室中涂上Matrigel或fibronectin(2 μL,1 μg/cm2,1 h),插图为一个腔室的图像;
    • (d)破坏液壁,用3 mL培养基清洗培养皿,以去除未附着的涂层,HEK细胞(6×105)被接种至培养皿中;
    • (e)24 h后,细胞形成单层,在表面上刮开一个伤口(0.4 mm×2 mm),以去除其路径上的细胞,用显微镜监测伤口的愈合。
  • (B-C)生长在Matrigel(B)或fibronectin(C)上的单层细胞的伤口图像。

    • (a-b)伤口形成前后的图像;
    • (c)24 h后,细胞生长使Matrigel和fibronectin的伤口宽度分别减少到<0.2 mm和<0.15 mm;
    • (d)48 h后,伤口完全愈合。结果表明,可以利用液壁很容易被破坏/重建这一特点在同一个培养皿中同时检测两个伤口的愈合。

Matrigel,基质胶是一种由肉瘤细胞分泌的胶状蛋白混合物,经常用于细胞侵袭的研究;

fibronectin,纤连蛋白是细胞外基质的一种糖蛋白,可增强伤口愈合。

Discussion

  展示了一个用于细胞生物学工作流程的液壁微流控平台,进行了在粘附细胞周围形成微流控排列,然后用于如细胞克隆、药物筛选和伤口愈合的概念验证。优点在于:

  • 可以在生物学家熟悉的细胞培养皿上构建复杂的微流控阵列,能支持复杂的工作流程,这与传统的方法形成了鲜明的对比,后者通常需要对生物测定进行调整以适应预先设计的微流控设备;
  • 使用该平台制作的微流控阵列有流体壁/天花板,能准确地、可重复地建造;
  • 该平台是高度灵活和可定制的;
  • 用流体壁取代固体壁具有开放式微流控技术的好处,如由于FC40的光学透明性,且对移液器尖端没有阻碍,因此在整个实验过程中,阵列中的所有点都是完全可见和可访问的;
  • 腔室周围的界限是稳定的;
  • 微流控阵列可以在实验中实时重新配置。

  限制在于:

  • 阵列仅限于两个维度;
  • 液体壁不可避免地比固体壁更脆弱;
  • 液体和表面必须匹配,以确保有稳定的界限。

Reference

Soitu C, Feuerborn A, Deroy C, et al. Raising fluid walls around living cells[J]. Science Advances, 2019, 5(6): eaav8002.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×